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ABSTRACT

We describe the exponent of a group-theoretical fusion category C =

C(G, ω, F, α) associated to a finite group G in terms of group cohomology.

We show that the exponent of C divides both e(ω)expG and (expG)2,

where e(ω) is the cohomological order of the 3-cocycle ω. In particular,

expC divides (dim C)2.

1. Introduction and main results

Throughout this note we shall work over an algebraically closed base field k of

characteristic zero. The notion of (quasi)exponent of a finite-dimensional Hopf

algebra H has been introduced in a series of papers by Etingof and Gelaki [11,

12] extending previous work of Kashina [18, 19]. By definition, the exponent of

H is the least integer N for which

mN (id ⊗ S−2 ⊗ · · · ⊗ S−2N+2)∆N = ǫ1,

where ∆N : H → H⊗N and mN : H⊗N → H are the iterated comultiplication

and multiplication maps, respectively. This gives a non-commutative analogue

of the exponent of a group.

It was conjectured, in the context of semisimple Hopf algebras, that the order

of a certain power map divides the dimension of H . In terms of the exponent,

the conjecture can be stated as follows:
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Conjecture 1.1 ([18]): If H is a semisimple Hopf algebra over k, then the

exponent of H divides the dimension of H .

This problem has an affirmative answer in a number of cases, but the general

answer is still not known. Etingof and Gelaki have proved several basic and

important properties and characterizations of the exponent, in particular, they

have shown that the exponent divides (dimH)3. One important property of the

exponent is its gauge invariance: that is, the exponent does not depend on the

Hopf algebra itself but only on its tensor category of representations. Gener-

alizing the definitions for finite dimensional Hopf algebras, Etingof introduced

the quasi-exponent of a finite rigid tensor category C in [10].

The main goal of this paper is to describe the exponent of a large class of

semisimple Hopf algebras, which exhausts all known examples, in terms of group

cohomology. Actually, this class consists not only of semisimple Hopf algebras

but also of semisimple quasi-Hopf algebras. Our results will imply that the

exponent of H divides (dimH)2 for all H in this class.

Group-theoretical fusion categories were introduced by Ostrik in [28]. Let

G be a finite group, and let ω: G × G × G → k× be a normalized 3-cocycle.

Let also F ⊆ G be a subgroup and τ : F × F → k× a normalized 2-cochain

ω|F×F×F = dτ . A group-theoretical category is a tensor category equivalent

to the category C(G, ω, F, α) of kαF -bimodules in the category VecG
ω of G-graded

vector spaces with associativity given by ω. A (quasi)-Hopf algebra H is called

group theoretical if RepH is.

Recall that the global dimension of C, denoted dim C, is the sum of squares

of the categorical dimensions of simple objects in C. If Rep H ≃ C(G, ω, F, α),

then dim C = dimH = |G|.

It is an open question whether every semisimple Hopf algebra over k is group-

theoretical or not [14]. Every group-theoretical category is equivalent to the

category of representations of a quasi-Hopf algebra. The explicit structure, up

to gauge equivalence, of group theoretical quasi-Hopf algebras was given in [26],

where other invariants, the Frobenius–Schur indicators, were computed in terms

of the group-theoretical data G, ω, F , τ .

Using a result of Schauenburg on the center of a bimodule category, it was

shown in [25] that a quasi-Hopf algebra H is group theoretical if and only if its

quantum double is gauge equivalent to a Dijkgraaf–Pasquier–Roche quasi-Hopf

algebra DωG [7].

In this paper we prove the following characterization of the exponent of a

group-theoretical category.
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Theorem 1.2: The exponent of C = C(G, ω, F, α) divides the modified expo-

nent

expωG := l.c.m.[e(ωg)|g| : g ∈ G],

and, moreover, expC = expωG in either of the following cases:

(i) |G| is odd,

(ii) C admits a fiber functor.

Here ωg is the restriction of ω to the subgroup generated by g and e(ωg) is its

cohomological order. Condition (ii) means that C is the category of represen-

tations a Hopf algebra. Theorem 1.2 allows us to give necessary and sufficient

conditions for expC to divide dim C when the last is odd or C admits a fiber

functor. See Theorems 5.12, 5.18.

The following theorems are proved as a consequence of this characterization.

Theorem 1.3: The exponent of the twisted quantum double DωG divides

(expG)2.

In particular, the exponent conjecture holds true for all semisimple quasi-Hopf

algebras which are gauge equivalent to a twisted Drinfeld double DωG. We also

prove that for the quasi-Hopf algebra DωG, the order of the element β divides

the exponent of G.

Theorem 1.4: Let C ≃ C(G, ω, F, τ) be a group-theoretical fusion category.

Then

(i) expG divides expC.

(ii) expC divides e(ω)expG. In particular, expC divides (dim C)2.

(iii) expC divides (expG)2.

(iv) expC and dim C have the same prime divisors.

The proof relies on the characterization result in [25]. We note that part (iv)

has been recently established in [20] for any semisimple Hopf algebra H .

In particular, it follows from Theorem 1.3 that the exponent of A divides

(dimA)2 for all bicrossed products arising from exact factorizations of finite

groups [25, Theorem 1.3] and all their twistings, that is, for all semisimple Hopf

algebras which are twist equivalent to some A that fits into an abelian exact

sequence

(1.1) k → kΓ → A → kF → k,

where F and Γ form a matched pair of finite groups; see [23, 24].
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In this case, we show that expA divides exp Opext(F, Γ)expG, where G =

F ⊲⊳ Γ is the factorizable group determining the matched pair and Opext(F, Γ)

is the abelian group classifying all extensions (1.1). See Corollary 5.24. Among

semisimple Hopf algebras arising from abelian extensions, the conjecture on the

exponent had been established under additional restrictions [19].

In the context of abelian extensions like (1.1) we also obtain, as an application

of results of Masuoka [24], a result that is of independent interest: we prove a

Hopf algebra generalization of the Schur–Zassenhauss Theorem for finite groups.

Namely, suppose that the orders of Γ and F are relatively prime. Then, after

twisting the multiplication and comultiplication if necessary, A is equivalent to

the split extension kΓ#kF . See Proposition 5.22.

The paper is organized as follows: in Sections 2 and 3 we recall some properties

of the exponent of a fusion category and of quasi-Hopf algebras, respectively.

In Section 4 we review results of Altschuler and Coste on Drinfeld and ribbon

elements and prove, under certain assumptions, some results on the powers of

the Drinfeld element that generalize those in [11]. Finally, in Section 5, we

prove our main results, using the ribbon element for a twisted Drinfeld double;

Subsections 5.1 and 5.2 concern particularly the Hopf algebra case.

Acknowledgements: The author is grateful to S. Montgomery for interest-

ing discussions on the exponent and its properties. She also thanks J. Carlson

for kind e-mail correspondence.

After submission of this paper, the author knew about the preprint [27], where

a related invariant, the Frobenius-Schur exponent, is introduced and studied.

2. Exponent of a tensor category

In this section we recall the notion of (quasi-)exponent of a finite tensor category

introduced by Etingof in [10, Section 6]. This generalization is based on the

results on the (quasi-)exponent of a finite dimensional Hopf algebra found in

the papers [11, 12].

Let C be a finite rigid tensor category over k and let Z(C) be its Drinfeld’s

center, which is a braided tensor category with respect to a canonical braiding

βUV : U ⊗ V → V ⊗ U . In the paper [10], the quasi-exponent qexp C of C is

defined as the smallest integer N such that (β2)N is unipotent in Z(C). Here,

β2 is the natural automorphism βV UβUV : U ⊗ V → U ⊗ V .

The notion of quasi-exponent of a finite tensor category gives, by restriction,

a notion of quasi-exponent of a finite dimensional quasi-Hopf algebra H which,

by definition, is a gauge invariant of H .
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If C is a fusion category, then the quasi-exponent of C is called the exponent

of C and denoted expC. We shall be interested in fusion categories of the form

C = Rep H , where H is a finite dimensional semisimple quasi-Hopf algebra. In

this case expC will be called the exponent of H and denoted expH .

It follows from [10, Proposition 6.3] that the exponent of C = Rep H satisfies

the following:

expC = expZ(C);(2.1)

expC equals the order of β2.(2.2)

Moreover, [10, Theorem 5.1] implies that expC is finite.

3. Semisimple quasi-Hopf algebras

Let (H, ∆, ǫ, φ,S, α, β) be a finite dimensional semisimple quasi-Hopf algebra [8]

(later on indicated by H for short). Here, φ ∈ (H⊗3)× is the associator,

S: H → Hop is the quasi-antipode and α, β ∈ H are related to S by

(3.1) S(h1)αh2 = ǫ(h)α, h1βS(h2) = ǫ(h)β, ∀h ∈ H ;

(3.2) φ(1)βS(φ(2))αφ(3) = 1 = S(φ(−1))αφ(−2)βS(φ(−3)),

where φ = φ(1) ⊗ φ(2) ⊗ φ(3) and φ−1 = φ(−1) ⊗ φ(−2) ⊗ φ(−3).

The category Rep H =: Rep(H, φ) is a fusion category of global dimension

dim C = dim H with associativity given by the action of φ.

Let H1 and H2 be finite dimensional semisimple quasi-Hopf algebras. The

categories Rep H1 and RepH2 are tensor equivalent if and only if H1 and H2

are gauge equivalent [13]; that is, if and only if there exists an invertible nor-

malized element F ∈ H1⊗H1 (a gauge transformation) such that (H1)F and

H2 are isomorphic as quasi-bialgebras, where (H1)F is the quasi-Hopf algebra

(H1, ∆F , ǫ, φF ,SF , αF , βF ), such that

∆F (h) = F∆(h)F−1, h ∈ H,

φF = (1 ⊗ F )(id ⊗ ∆)(F )φ(∆ ⊗ id)(F−1)(F−1 ⊗ 1),

αF = S(F (−1))αF (−2), βF = F (1)βS(F (2));

with the notation F = F (1) ⊗ F (2), F−1 = F (−1) ⊗ F (−2).

There is also a notion of quasitriangular quasi-Hopf algebra, requiring the

existence of an invertible R-matrix R ∈ H ⊗H . When H is quasitriangular the

category Rep H is a braided tensor category with braiding given by the action

of R.
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The center Z(Rep H) is equivalent to the representation category of the quan-

tum double D(H) [21, 15]: this is a quasitriangular semisimple quasi-Hopf al-

gebra with underlying vector space H∗ ⊗ H and canonical R-matrix

(3.3) R =
∑

i

hi ⊗ D(hi),

where (hi)i is a basis of H and (hi)i is the dual basis.

Since the element R21R ∈ D(H)⊗D(H) implements the natural isomorphism

β2 in the category Rep D(H) ≃ Z(Rep H), the results in [10] imply the following

lemma.

Lemma 3.1: The order of R21R is finite and equals the exponent of Rep H .

3.1. Twisted quantum doubles. Let G be a finite group and ω a normal-

ized 3-cocycle on G. The identity element in G will be denoted by e. Let H

be the quasi-Hopf algebra (kG, ω) of k-valued functions on G with associator

ω ∈ kG ⊗ kG ⊗ kG. Then the quantum double of H is a quasitriangular quasi-

Hopf algebra isomorphic to the Dijkgraaf–Pasquier–Roche quasi-Hopf algebra

DωG [21, 7].

This quasi-Hopf algebra is defined on the vector space kG ⊗ kG as follows.

Consider the maps θ, γ: G × G → (kG)×,

θ(x, y) =
∑

g∈G

θg(x, y)eg, γ(x, y) =
∑

g∈G

γg(x, y)eg,

where eg ∈ kG are the canonical idempotents: eg(h) = δg,h, g, h ∈ G, and

θg(x, y) =
ω(g, x, y)ω(x, y, (xy)−1g(xy))

ω(x, x−1gx, y)
,(3.4)

γg(x, y) =
ω(x, y, g)ω(g, g−1xg, g−1yg)

ω(x, g, g−1yg)
.(3.5)

Then DωG is as an algebra the crossed product kG#θkG, with respect to the

adjoint action, and it is the crossed product kGγ#kG as a coalgebra, with

respect to the trivial coaction.

A basis of DωG consists of the elements eg#x, g, x ∈ G. The multiplication

and comultiplication are explicitly determined by

(eg#x)(eh#y) = δg,xhx−1θg(x, y)eg#xy,(3.6)

∆(eg#x) =
∑

st=g

γx(s, t)es#x ⊗ et#x.(3.7)
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The unit element is 1 := 1#e =
∑

g∈G eg#e and the counit and antipode are

determined by

ǫ(eg#x) = δg,e,(3.8)

S(eg#x) = θg−1(x, x−1)−1γx(g, g−1)−1ex−1g−1x#x−1,(3.9)

with α = 1 and β =
∑

g ω(g, g−1, g)eg.

This is a quasitriangular quasi-Hopf algebra with associator and R-matrix

given, respectively, by

(3.10) φ =
∑

a,b,c

ω(a, b, c)−1ea ⊗ eb ⊗ ec, R =
∑

g

eg ⊗ g.

It is also known that in the twisted Drinfeld double, β is an invertible element

with inverse S(β) = β−1. Moreover, β implements S2 by conjugation; that is,

for all elements h ∈ DωG we have the relation

(3.11) S2(h) = β−1hβ.

Recall that an element a ∈ DωG is called group-like if ∆(a) = a⊗a. Axiom

(3.1) for the antipode, combined with the fact that α = 1 in DωG, implies that

the set of non-zero group-like elements form a subgroup of the group of units of

DωG, denoted G(DωG), and we have S(a) = a−1, for all a ∈ G(DωG).

The group-like elements in twisted Drinfeld doubles have been completely

described in [22, Proposition 3.2]: an element a ∈ DωG is group-like if and only

if there exist elements x ∈ G and f ∈ kG such that

γx = df, and a = f#x.

Here df : G → k denotes the coboundary of f given by

df(g, h) = f(g)f(h)f(gh)−1.

4. Drinfeld elements and ribbon elements

Let (H, φ, R) be a quasitriangular quasi-Hopf algebra. Let u ∈ H be the element

defined by

u := S(φ(−2)βS(φ(−3)))S(Rj)αRjφ
(−1) = m21(id ⊗ S)((α ⊗ 1)Rp),

where p = pR = φ(−1) ⊗ φ(−2)βS(φ(−3)) ∈ H ⊗H is the special element related

to a canonical adjunction formula in RepH [8, 15].
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The element u has been introduced by Altschuler and Coste in [1] generalizing

the Drinfeld element for quasitriangular Hopf algebras [9]. It satisfies

S2(h) = uhu−1,

for all h ∈ H [1, Section 3]. Here, and in what follows, we are using the notation

R = Rj ⊗Rj, assuming a summation symbol over repeated indexes. The action

of u on finite dimensional representations of H gives a canonical isomorphism

between the dual and double dual functors.

Remark 4.1: The Drinfeld element u satisfies the equation [1, (3.9)]

S(α)u = S(Rj)αRj .

In particular, when α = 1, we get u = S(Rj)Rj , which coincides with the

formula given by Drinfeld in the Hopf algebra case.

Let us denote R̃ = (α⊗1)Rp ∈ H⊗H . Let n ≥ 1 be an integer. Following [11,

12] we define an element R̃n ∈ H ⊗ H by the formula

R̃n = R̃(id ⊗ S2)(R̃) · · · (id ⊗ S2n−2)(R̃)

= R̃i1R̃i2 · · · R̃in ⊗ R̃i1S2(R̃i2) · · · S2n−2(R̃in),

where R̃ = R̃i1 ⊗ R̃i1 = R̃i2 ⊗ R̃i2 = · · · = R̃in ⊗ R̃in .

As in the Hopf algebra case, this element is related to the powers of the

Drinfeld element. The following lemma gives the precise relation.

Lemma 4.2: We have un = m21(id ⊗ S)(R̃n).

Proof: The proof is by induction on n. If n = 1, there is nothing to prove. Let

n ≥ 2. We have

m21(id ⊗ S)(R̃n+1) = S2n+1(R̃in+1) · · · S(R̃i1)R̃i1 · · · R̃in+1

= S2n+1(R̃in+1) · · · S3(R̃i2)uR̃i2 · · · R̃in+1

= S2n+1(R̃in+1) · · · S3(R̃i2)S2(R̃i2) · · · S
2(R̃in+1

)u

= S2(S2n−1(R̃in+1) · · · S(R̃i2)R̃i2 · · · R̃in+1
)u

= S2(un)u = unu = un+1,

by induction, and using that S2(u) = u. This proves the lemma.
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Remark 4.3: Suppose that α = 1. By Remark 4.1, u = S(Rj)Rj . Then

it is not difficult to show by induction on n that in this case we have un =

m21(id ⊗ S)(Rn), where Rn is defined by

Rn = R(id ⊗ S2)(R) · · · (id ⊗ S2n−2)(R),

as in the Hopf algebra case.

Unlike in the semisimple Hopf algebra case, it may happen that H is semisim-

ple but u is not a ribbon element in H . Suppose α is invertible in H . According

to the definition in 4.1 and Remark on page 13 in [1], a ribbon element in H is

the same as a central element v ∈ H satisfying

v2 = uS(u);(4.1)

S(v) = v;(4.2)

ǫ(v) = 1;(4.3)

∆(v) = (v ⊗ v)(R21R)−1 = (R21R)−1(v ⊗ v).(4.4)

For a finite group G with normalized 3-cocycle ω, the expression for the

Drinfeld element in the twisted quantum double DωG is the following:

(4.5) u =
∑

g∈G

ω(g, g−1, g)−2eg#g−1.

Moreover, DωG is a ribbon quasi-Hopf algebra with ribbon element v given by

(4.6) v =
∑

g∈G

ω(g, g−1, g)−1eg#g−1,

and the following relation holds:

(4.7) v = βu.

See [1, Section 5].

The action of the ribbon element v on irreducible representations gives the

(twisted) modular invariant matrix T studied in various papers, see for in-

stance [4, 6, 2].

We also note the following simpler formula for the inverse of the ribbon ele-

ment:

(4.8) v−1 =
∑

g∈G

eg#g.

Recall the expression (3.10) for the canonical R-matrix R ∈ DωG ⊗ DωG.
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Lemma 4.4: Let n ≥ 1. Then Rn =
∑

g∈G eg ⊗ (gβ−1)nβn.

Note, in addition, the following expression for the nth power gn in DωG of

an element g ∈ G:

gn =
∑

s∈G

θs(g, g)θs(g
2, g) · · · θs(g

n−1, g)es#gn.

Proof: Using relation (3.11), we compute

Rn = Ri1Ri2 · · ·Rin ⊗Ri1S2(Ri2 ) · · · S2n−2(Rin)

= Ri1Ri2 · · ·Rin ⊗Ri1(β−1Ri2β)(β−2Ri2β2) · · ·β−n+1Rinβn−1

= Ri1Ri2 · · ·Rin ⊗ (Ri1β−1)(Ri2β−1) · · · (Rinβ−1)βn,

which, in view of (3.10), equals

∑

g1,...,gn

eg1
. . . egn ⊗ (g1β

−1) · · · (gnβ−1)βn =
∑

g

eg ⊗ (gβ−1)nβn,

as claimed.

The exponent of DωG can be characterized in terms of the ribbon element

(4.6).

Lemma 4.5: The exponent of DωG equals the smallest positive integer N such

that vN ∈ G(DωG).

Proof: By Lemma 3.1 the exponent of DωG equals the order of R21R. Since v

is a ribbon element for DωG, the lemma follows in view of formula (4.4).

5. Exponent of group theoretical fusion categories

Let G be a finite group, and let F ⊆ G be a subgroup. Let also ω: G×G×G →k×

be a normalized 3-cocycle, and τ : F × F → k× a normalized 2-cochain, such

that ω|F×F×F = dτ .

Consider the category VecG
ω of finite dimensional G-graded vector spaces,

with associativity constraint given by ω. That is, VecG
ω is the representation

category of the quasi-Hopf algebra (kG, ω). Since the twisted group algebra

kτF is an algebra in VecG
ω , the category C(G, ω, F, τ) of kτF -bimodules in VecG

ω

is a tensor category. A group theoretical category is by definition a fusion

category equivalent to C(G, ω, F, τ) for some G, F , ω, τ [28, Section 3].

A (quasi)-Hopf algebra H is called group theoretical if RepH is. By the

results in [25], a quasi-Hopf algebra H is group theoretical if and only if its
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quantum double is gauge equivalent to a Dijkgraaf–Pasquier–Roche quasi-Hopf

algebra DωG. In particular, if RepH ≃ C(G, ω, F, τ), then dimH = |G|.

Properties (2.1) and (2.2) of the exponent imply the following lemma.

Lemma 5.1: Let C ≃ C(G, ω, F, τ) be a group-theoretical category. Then

expC = expDωG = exp(kG, ω).

In particular if H is a group theoretical quasi-Hopf algebra, then expH =

expDωG = exp(kG, ω), for appropriate choice of a finite group G and a normal-

ized 3-cocycle ω on G, such that |G| = dimH .

Remark 5.2: Note that, by gauge invariance, the exponent of DωG depends

only on the cohomology class of ω.

It is well-known that |G|Hr(G, k×) = 0, for all r ≥ 0. However, this relation is

not always true if we replace |G| by expG. Nevertheless, we have the following

weaker annihilation property. This will be used next to prove a divisibility

property for the order of β in a twisted quantum double.

Lemma 5.3: Let N = expG. There exists a normalized 3-cocycle ω̃ which is

cohomologous to ω and such that

ω̃(g, g−1, g)N = 1, ∀g ∈ G.

Proof: Since |〈g〉| divides the exponent of G, for all g ∈ G, then expG anihilates

H3(〈g〉, k×), for all g ∈ G.

Therefore, for all g ∈ G, there exists a normalized 2-cochain fg: 〈g〉×〈g〉 → k×

such that

ω(x, y, z)N = dfg(x, y, z) = fg(xy, z)fg(x, y)fg(x, yz)−1fg(y, z)−1,

for all x, y, z ∈ 〈g〉. Because 〈g−1〉 = 〈g〉, we may choose fg in a way such that

fg−1

= fg.

Next we define a normalized 2-cochain f : G × G → k× in the form

f(g, h) =

{
fg(g, h), if h ∈ 〈g〉,
1, otherwise.

Then, for all g ∈ G, we have

(df)(g, g−1, g) = f(e, g)f(g, g−1)f(g, e)−1f(g−1, g)−1 = f(g, g−1)f(g−1, g)−1

= fg(g, g−1)fg−1

(g−1, g)−1

= dfg(g, g−1, g) (since fg = fg−1

)

= ω(g, g−1, g)N .

The lemma is established by putting ω̃ = ωd(f−1/N ).
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As a consequence of Lemma 5.3 we obtain the following.

Corollary 5.4: The order of β in the group of units of DωG divides the

exponent of G.

Let G be a finite group and let ω be a normalized 3-cocycle on G. In what

follows we shall give a proof of the characterization in Theorem 1.2.

Let n ≥ 1. We introduce a map πn,ω: G → k×, by the formula π1 = ǫ, and

πn,ω(g) = πn−1,ω(g)ω(g, gn−1, g), g ∈ G, n ≥ 2. In other words,

(5.1) πn,ω(g) = ω(g, gn−1, g)ω(g, gn−2, g) · · ·ω(g, g, g).

Compare with formula (A.3) in [6].

Let g ∈ G and suppose that |g| divides n. The following relation is easily seen

and will be frequently used in what follows:

(5.2) πn,ω(g) = π|g|,ω̃(g),

where ω̃: 〈g〉×〈g〉×〈g〉 → k× is the 3-cocycle obtained from ωn/|g| by restriction.

Recall the expression (4.8) for the inverse of the ribbon element in DωG. The

following lemma follows from a straightforward computation.

Lemma 5.5: Let n ≥ 1. Then v−n =
∑

g∈G πn(g)eg#gn.

Let us denote by Ĝ the group of (one-dimensional) characters on the group

G. So that Ĝ = G(kG).

Proposition 5.6:

(i) The exponent of G divides expDωG.

(ii) The exponent of DωG equals the smallest integer n with the properties

πn,ω ∈ Ĝ, gn = e, ∀g ∈ G.

Proof: By Lemma 4.5 the exponent of DωG equals the smallest positive integer

n such that vn (hence also v−n) belongs to the group G(DωG).

Suppose that vn ∈ G(DωG). By the description of group-like elements in

twisted Drinfeld doubles from [22, Proposition 3.2] (cf. Subsection 3.1), there

exist x ∈ G and f ∈ kG such that γx = df and

vn = f#x.

Applying the map ǫ ⊗ id to both sides, we get (ǫ ⊗ id)(vn) = ǫ(f)x. But

(ǫ ⊗ id)(v) = e because of formula (4.6), and ǫ ⊗ id: DωG → kG is an algebra
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map. Therefore ǫ(f)x = e. This implies that x = e, whence df = γe = 1, and

thus f ∈ Ĝ. In particular, vn = f#e ∈ kG and v−n = f−1#e. It follows from

Lemma 5.5 that gn = e, for all g ∈ G. Therefore expG divides n. Hence part

(i) follows.

Using that gn = e, for all g ∈ G, Lemma 5.5 gives

v−n =
∑

g∈G

πn(g)eg#gn =

( ∑

g∈G

πn(g)eg

)
#e.

Therefore πn must be a character of G. This finishes the proof of the

proposition.

Theorem 5.7: The exponent of DωG divides e(ω)expG.

Proof: We may assume that ω(x, y, z)e(ω) = 1, for all x, y, z ∈ G. It follows

from equation (5.2) that

πe(ω)expG,ω = 1.

This implies the theorem, in view of Proposition 5.6.

Since both e(ω) and expG divide |G|, it follows from Theorem 5.7 that for

a twisted Drinfeld double DωG the exponent divides |G|2 which equals the

dimension of DωG. We shall see next that this is not true in general for any

quasi-Hopf algebra.

Example 5.8: Let G = Cn = 〈a : an = 1〉 be a cyclic group of odd order n. The

group H3(Cn, k×) is cyclic of order n parametrized by the cohomology classes

of the 3-cocycles ω = ωζ defined by

(5.3) ω(ai, aj, al) = ζlqij ,

0 ≤ i, j, l ≤ n − 1, where ζ ∈ k× are the nth roots of 1, and qij ∈ Z is the

quotient of i + j in the division by n. Explicitly,

qij =

{
0, if i + j ≤ n − 1,
1, if i + j ≥ n,

and

ω(ai, aj , al) =

{
1, if i + j ≤ n − 1,
ζl, if i + j ≥ n.

for all 0 ≤ i, j, l ≤ n − 1.
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Lemma 5.9: Let ω be as in (5.3). Then expDωCn = |ζ|n.

In particular, the exponent of the quasi-Hopf algebra (kG, ω) should not divide

the order of G (=its dimension).

Proof: Let N = expDωCn. By Theorem 5.7, N/e(ω)expCn = |ζ|n. On the

other hand, straightforward computations show that

πn,ω(a) =

n−1∏

j=1

ω(a, aj , a) = ζ,

πn,ω(an−1) =

n−1∏

i=1

ω(an−1, an−i, an−1) = ζ(n−1)2 = ζ.

Since n/N , we have

πN,ω(a) = πn,ωN/n(a) = ζN/n,

and

πN,ω(an−1) = πn,ωN/n(an−1) = ζN/n.

By Proposition 5.6 we must have ζN/n = ζ−N/n, implying that |ζ| divides

2N/n. Since |ζ| is odd by assumption, we obtain |ζ|n/N . Hence N = |ζ|n as

claimed.

In the case n = 2, however, the exponent of (kZ2, ω), where ω is the non-

trivial cocycle given by ω(a, a, a) = −1, does equal the order of Z2, because in

this case ζ = ζ−1.

We now introduce a modified exponent expωG of a finite group G endowed

with a 3-cocycle ω that will be useful to describe the exponent of DωG. Let us

denote by ωg the restriction of ω to the subgroup generated by g ∈ G. Let

(5.4) expωG = l.c.m.[e(ωg)|g| : g ∈ G].

It is clear that expG divides expωG, and expωG divides e(ω)expG. For in-

stance, when G is cyclic of order n, we have expωG = e(ω)n.

Proposition 5.10: The exponent of DωG divides expωG. Moreover, equality

holds when |G| is odd.

Proof: Let n = expωG. Then |g|/n, for all g ∈ G, and by (5.2),

πn,ω(g) = π|g|,ω̃,
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for all g ∈ G, where ω̃ is the restriction to 〈g〉 of the 3-cocycle ωn/|g|. Since, by

definition of expωG, e(ωg) divides n/|g|, then πn,ω(g) = 1, for all g ∈ G. By

Proposition 5.6, expDωG divides n, as claimed.

Suppose now that |G| is odd, and let N = expDωG. Let g ∈ G. As in the

proof of Lemma 5.9 we find that the class of the restriction of ωN/|g| to the

subgroup generated by g is trivial.

Therefore e(ωg)|g|/N , for all g ∈ G, implying that expωG/N . This shows

that expDωG = expωG, when |G| is odd, as claimed.

Proof of Theorem 1.3: If C is a cyclic group, then |H3(C, k×)| = |C|, cf. Ex-

ample 5.8. Then e(ωg)/|g|, for all g ∈ G. Thus expωG = l.c.m.[e(ωg)|g| : g ∈ G]

divides (expG)2. This implies the theorem in view of Proposition 5.10.

Example 5.11: Suppose that |G| = pn and expG = pk, where p is a prime

number, and 2k ≤ n. Then expDωG divides |G|.

In particular, if G is an extraspecial p-group of order |G| > p3, then expDωG

divides |G|.

Proof: The first claim is clear from Corollary 5. Suppose that G is extraspecial

and |G| > p3. Then |G| = p1+2m, for some integer m ≥ 2, and by definition,

there is a central extension 0 → Zp → G → (Zp)
2m → 1; cf. [3, 8.23]. Note that,

in general, if N is a normal subgroup of G, then expG divides expNexp(G/N).

Since both the kernel and the quotient are of exponent p, this implies that expG

divides p2. Hence (expG)2/p4 and this divides |G| because |G| > p3.

Proof of Theorem 1.4: To prove the theorem we shall combine the results in

this section with Lemma 5.1 that tells us that expC = expDωG.

Part (i) follows from Proposition 5.6, (ii) follows from Theorem 5.7, (iii)

follows from Theorem 1.3, and finally (iv) is a consequence of (i) and (iii).

Let us denote by [G : g] the index in G of the subgroup generated by g ∈ G.

Theorem 5.12: Suppose that

(i) e(ωg) divides [G : g], for all g ∈ G. Then

(ii) expDωG divides|G|.

If the order of G is odd, then (i) is equivalent to (ii).

Proof: The first claim follows immediately from Proposition 5.10.

Now suppose that |G| is odd and that Condition (ii) holds. As in the proof

of Lemma 5.9 we find that the class of the restriction of ω[G:g] to the subgroup

generated by g is trivial. Then e(ωg) divides [G : g], and (i) holds.
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5.1. Group theoretical Hopf algebras. A group theoretical category

is the representation category of a Hopf algebra if and only if it admits a fiber

functor.

Recall from [28] that fiber functors of the group theoretical fusion category

C(G, ω, F, α) are classified by equivalence classes of subgroups Γ ⊆ G and 2-

cocycles β on Γ such that

(1) ω|Γ = 1;

(2) G = FΓ;

(3) the cocycle αβ−1 is non-degenerate on F ∩ Γ.

In what follows we shall assume that C ≃ C(G, ω, F, α) is a group-theoretical

category admitting a fiber functor. That is, C ≃ Rep A, for some group-

theoretical Hopf algebra A.

The exponent of a group theoretical Hopf algebra turns out to have a simpler

description in terms of twisted Drinfeld double.

Lemma 5.13: Let πn,ω be as in (5.1), n ≥ 1. The following statements are

equivalent:

(i) πn,ω: G → k× is a group homomorphism;

(ii) πn,ω(g) = 1, for all g ∈ G.

Proof: We only need to show (i) =⇒ (ii). Let Γ ⊆ G be a subgroup giving rise

to a fiber functor. We may assume that ω|Γ = 1 and ω|F = 1.

Let g ∈ G. Then g can be written in the form g = xs, x ∈ F , s ∈ Γ. If πn,ω

is a group homomorphism, then πn,ω(g) = πn,ω(x)πn,ω(s) = 1.

Proposition 5.14: Let A be a group theoretical Hopf algebra with

Rep A ≃ C(G, ω, F, α).

Then the exponent of A equals the order of the ribbon element v in DωG.

Proof: By Lemma 5.1, expA = expDωG. Combining Proposition 5.6 with

Lemma 5.13, we see that expDωG equals the smallest integer n such that gn = e,

for all g ∈ G, and πn,ω = 1. This is exactly the order of v in view of formula

(4.8).

Remark 5.15: Since the index of a subgroup annihilates the kernel of the restric-

tion map, we find that the following relation holds for every group theoretical

Hopf algebra:

(5.5) expDωG/([G : F ]; [G : Γ])expG.
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Next we prove that the results in Proposition 5.10 and Theorem 5.12 hold for

group-theoretical Hopf algebras, without the assumption that G has odd order.

Proposition 5.16: We have expC = expωG.

Proof: We know that expC = expDωG. The proof is identical to the proof of

Proposition 5.10, using Lemma 5.13.

Proof of Theorem 1.2: By Lemma 5.1, expC = expDωG. The theorem follows

from Proposition 5.10 in case (i), and from Proposition 5.16 in case (ii).

Remark 5.17: Note that, in general, it is not true that expC divides expG.

For instance, if C = Rep H8, where H8 is the 8-dimensional Kac-Paljutkin Hopf

algebra [17], then G = D4 the dihedral group of order 8. We have in this case

expC = 8 while expG = 4.

We next give some necessary and sufficient conditions for expC to divide dim C.

Theorem 5.18: The following are equivalent:

(i) expC divides dim C;

(ii) e(ωg) divides [G : g], for all g ∈ G.

Proof: Identical to the proof of Theorem 5.12, using Lemma 5.13 and the fact

that expC = expDωG.

Lemma 5.19: Suppose that expC divides dim C. Then e(ω) divides [G : g]2, for

all g ∈ G.

Proof: By Lemma 5.13, π|G|,ω(g) = 1, for all g ∈ G. Using Equation (5.2), we

have 1 = π|G|,ω(g) = πe(g),ω̃(g), where ω̃: 〈g〉 × 〈g〉 × 〈g〉 → k× is the 3-cocycle

obtained from ω[G:g] by restriction.

As in the proof of Lemma 5.9 we find that the class of the restriction of ω[G:g]

to the subgroup generated by g is trivial.

The composition

H3(G, k×)
res
→H3(〈g〉, k×)

tr
→H3(G, k×),

where tr denotes the transfer map, is multiplication by the index [G : g] [5].

Therefore, we find that ω[G:g]2 = 1. Hence e(ω)/[G : g]2, as claimed.

Suppose that G = FΓ is any factorizable finite group. Let H̃3(G, k×) denote

the kernel of the restriction map H3(G, k×) → H3(F, k×) ⊕ H3(Γ, k×). The

following question is of a purely cohomological nature.
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Question 5.20: Does the product expH̃3(G, k×)expG divide the order of G?

An affirmative answer to this question would guarantee that the exponent

conjecture holds true for all group-theoretical Hopf algebras.

5.2. Abelian extensions. The class of group-theoretical quasi-Hopf alge-

bras contains in particular the class of abelian bicrossed product Hopf algebras,

first studied by G. I Kac [16]. We refer the reader to [23, 24] for the main

features of the subject.

In what follows we shall consider a fixed matched pair of finite groups (F, Γ)

with respect to compatible actions ⊲: Γ × F → F , ⊳: Γ × F → Γ. These

actions determine a unique group structure on the product of F with Γ, denoted

G = F ⊲⊳ Γ, in such a way that G admits an exact factorization G = FΓ,

F ∩ Γ = 1.

Remark 5.21: For every group with an exact factorization as above, there are

two convergent spectral sequences

Hp(F, Hq(Γ, k×)) ⇒ Hp+q(G, k×),

Hp(Γ, Hq(F, k×)) ⇒ Hp+q(G, k×).

These spectral sequences come from the double complex in [23, 24] whose

total complex gives a free resolution of the G-module Z.

For every class (σ, τ) in Opext(kG, kF ); that is, σ: F × F → (kΓ)× and

τ : Γ × Γ → (kF )× are normalized 2-cocycles subject to certain compatibility

conditions, there is a bicrossed product Hopf algebra A := kΓτ#σkF . This gives

a one-to-one correspondence between the equivalence classes of Hopf algebra

extensions

(5.6) k → kΓ → A → kF → k,

affording the actions ⊲, ⊳, and the abelian group Opext(kΓ, kF ).

The Kac exact sequence associated to the matched pair (F, Γ) [16, 23] has

the following form:

0 → H1(G, k×)
res
−→H1(F, k×) ⊕ H1(Γ, k×) → Aut(kΓ#kF )

→ H2(G, k×)
res
−→H2(F, k×) ⊕ H2(Γ, k×)

δ
−→Opext(kΓ, kF )

→ H3(G, k×)
res
−→H3(F, k×) ⊕ H3(Γ, k×) → . . .

where the res denote the restriction maps.
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Hopf algebras A arising from abelian exact sequences are always group-theo-

retical: indeed, RepA ≃ C(G, ω, F, 1), where G = F ⊲⊳ Γ and ω is the image

of (σ, τ) in Kac exact sequence; see [25, Theorem 1.3]. Explicitly, the 3-cocycle

ω = ω(σ, τ) can be represented by

(5.7) ω(xg, x′g′, x′′g′′) = τx′′(g⊳x′, g′)σg(x
′, g′⊲x′′),

for all x, x′, x′′ ∈ F , g, g′, g′′ ∈ Γ.

Recall the Schur–Zassenhauss Theorem for finite groups that says that any

extension G of a group F by a group Γ, with |F | and |Γ| relatively prime, splits.

That is, G is a semidirect product of F ⋊ Γ. The following proposition gives an

analogue of this result for Hopf algebras.

Proposition 5.22: Suppose that |F | and |Γ| are relatively prime. Let A be a

Hopf algebra fitting into an extension (5.6). Then A is obtained from the split

extension kΓ#kF by twisting the multiplication and the comultiplication.

Proof: Let (σ, τ) be the element in Opext(F, Γ) corresponding to the exten-

sion (5.6). The indexes [G, Γ] = |F | and [G, F ] = |Γ| annihilate the kernel of

the restriction map

H3(G, k×) → H3(Γ, k×) ⊕ H3(F, k×),

whence by exactness of the Kac sequence, (σ, τ) belongs to the image of δ. Now

the result of Masuoka on cocycle twists of bicrossed products [24] implies the

proposition.

Corollary 5.23: Let the exact sequence (5.6) and suppose that |F |, |Γ| are

relatively prime. Then expA = expF ⊲⊳ Γ.

In particular, A and all their cocycle twists satisfy the exponent conjecture 1.1.

Proof: By Proposition 5.23 and the twist invariance of the exponent, we may

assume that the extension (5.6) splits. In this case the 3-cocycle ω associated to

A under the Kac exact sequence is trivial. The corollary follows from Theorem

1.3.

The following is a consequence of Theorem 1.3.

Corollary 5.24: Let A be a Hopf algebra which fits into an abelian exact

sequence (5.6). Then expA divides expOpext(Γ, F )expG.

Proof: By Theorem 1.3 (ii), expA divides e(ω)expG, where ω is the 3-cocycle

coming from the element in Opext(F, Γ) corresponding to A under the map
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δ in the Kac sequence. The corollary follows from the exactness of the se-

quence.

The following proposition is a refinement of the relation (5.5) in the case of

abelian exact sequences. It generalizes the statement in Corollary 5.22.

Proposition 5.25: Let A be a Hopf algebra which fits into an abelian exact

sequence (5.6). Then expA divides (|F |; |Γ|)expG.

Proof: The indexes [G, Γ] = |F | and [G, F ] = |Γ| annihilate the kernel of the

restriction map H3(G, k×) → H3(Γ, k×) ⊕ H3(F, k×). Hence e(ω)/(|F |; |Γ|).

This implies the proposition.
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